GO
en-USnb-NO
Understanding and predicting how climate change impacts Svalbard ptarmigan population dynamics

Publisert 18.02.2021

Iterative near-term forecasting is a promising approach to better understand and manage rapidly changing ecosystems such as the Arctic. Forecasts generated on a short-term time scale allow scientific hypotheses to be tested more frequently, speeding up scientific advancement, and are relevant to managers because the time scale can be influenced by decision-making. This approach was used by COAT researchers to investigate the impact of changing climate on Svalbard ptarmigan.

Graphical abstract describing the approach used to study population dynamics of Svalbard ptarmigan. First, researchers carefully laid out the hypothesized impacts of several biotic and abiotic factors on ptarmigan dynamics and visualized them through a conceptual model. Then, they fitted state-space models to 15 years of ptarmigan monitoring data to: 1) quantify the effects of potential drivers of population dynamics (explanatory predictions) and 2) assess the ability of candidate models of increasing complexity to forecast next‐year population density (anticipatory predictions).
Graphical abstract describing the approach used to study population dynamics of Svalbard ptarmigan. First, researchers carefully laid out the hypothesized impacts of several biotic and abiotic factors on ptarmigan dynamics and visualized them through a conceptual model. Then, they fitted state-space models to 15 years of ptarmigan monitoring data to: 1) quantify the effects of potential drivers of population dynamics (explanatory predictions) and 2) assess the ability of candidate models of increasing complexity to forecast next‐year population density (anticipatory predictions).

 

It is generally acknowledged that long-term monitoring studies represent a baseline approach to understand the impacts of climate change on species and ecosystems. Monitoring data series spanning many years can be used to generate both explanatory predictions (i.e. predictions used to test theories) and anticipatory predictions (i.e. predictions used to inform future decisions). Because predicting future ecological states is challenging, ecologists advocate focusing on near-term predictions, that is, predictions that are iteratively generated on a short-term time scale. This approach: 1) allows more frequent hypothesis-testing and model validation, making scientific evidence grow faster, and 2) is especially profitable to management because forecasts are generated on a time scale that can be influenced by decision making. For these reasons, iterative near-term forecasting is expected to be particularly suitable to study and manage ecosystems that exhibit rapidly changing conditions, such as arctic ecosystems subject to climate change.

In a new study, COAT researchers used iterative near-term forecasting to study drivers of population dynamics of Svalbard ptarmigan Lagopus muta hyperborea and evaluate the ability of state-space models to predict next-year ptarmigan density. Svalbard is the subregion of the arctic that has experienced the most profound warming in the last decade and impacts on the species belonging to its relatively simple food web have already been detected. The Svalbard ptarmigan is also a common game species in Svalbard. However, little is known about what drives its population dynamics and how it will respond to climate change and harvest. The researchers, therefore, used a combination of explanatory and anticipatory predictions to address these questions.

Benefitting from 15 years of ecosystem-wide monitoring data including distance-sampling counts of ptarmigan, researchers could attribute a recent increasing trend in the ptarmigan population to major changes in winter climate, especially in terms of mean temperature. As winters become warmer, ptarmigan appear to benefit from these novel conditions likely because their energy needs for thermoregulation is reduced. This probably improves their body condition throughout the winter and thus increase survival. The strong positive effect of increasing winter temperature on ptarmigan population growth currently outweighs the negative impacts of other manifestations of climate change, e.g. rain-on-snow events. The ptarmigan population appears also to compensate for current harvest levels.

When researchers compared the ability of several statistical models to predict next-year ptarmigan density, they observed that all models yielded good forecasts despite being based on a relatively short time series. It was encouraging to observe that forecasts improved with the length of the time series. Moreover, models including environmental predictors performed slightly better than simpler models. Overall, these results support the continuation of the ecosystem-wide monitoring in Svalbard and the adoption of iterative forecasting as a tool to study and manage ptarmigan populations. More generally, these results highlight the value of environmental data collected on wide spatiotemporal scales to better understand the complex impacts of climate change; COAT makes it possible to implement such a large-scale monitoring system in Svalbard.

Full paper

This article got the front page of Global Change Biology, Volum 27, Number 8, April 2021.

More news

Jul12 COAT predicts this year’s ptarmigan density in Finnmark
Created by Leif Einar Støvern on 7/12/2022 8:24:00 AM

COAT has modeled the population fluctuations of willow ptarmigan in Finnmark and looked at what inf...
Read More..

Jun13 One more PhD in COAT
Created by Leif Einar Støvern on 6/13/2022 3:24:00 AM

On 8th of June Eivind Kleiven has successfully defended his PhD thesis “ Population cycles in sma...
Read More..

Jun08 Fresh PhD in COAT
Created by Leif Einar Støvern on 6/8/2022 8:24:00 AM

On the 3rd of June Pedro Da Silva Nicolau has successfully defended his PhD thesis “ Boreal roden...
Read More..

Jun02 New PhD in COAT
Created by Leif Einar Støvern on 6/2/2022 11:24:00 AM

On 24th of May Isabell Eischeid has successfully defended her PhD thesis “ T undra vegetation ecol...
Read More..

May13 Automatic sound stations and bioacoustics: The backbone of COAT Varanger's annual winter field work on ptarmigan
Created by Leif Einar Støvern on 5/13/2022 1:24:00 AM

Members of COAT Varanger’s ptarmigan module has recently deployed the sound stations for this year’...
Read More..

Apr29 Monitoring of gyrfalcons, golden eagles and ravens in Varanger
Created by Leif Einar Støvern on 4/29/2022 1:24:00 AM

COAT have in collaboration with Rovfuglgruppa I Vest-Finnmark, for the fourth consecutive year, che...
Read More..

Apr19 New study started in Svalbard
Created by Leif Einar Støvern on 4/19/2022 8:24:00 AM

We have started a large carcass-project in Svalbard and the first pictures is already collected. It...
Read More..

Feb18 Track our red foxes online!
Created by Leif Einar Støvern on 2/18/2022 2:24:00 AM

You may have heard about our gps-tracking project of red foxes on Varanger Peninsula. You can now p...
Read More..

Feb09 COAT related publications from the SUSTAIN project
Created by Leif Einar Støvern on 2/9/2022 12:24:00 PM

SUSTAIN was a nationally coordinated research project funded by the Research Council of Norway du...
Read More..

Dec08 Drone-based mapping of changed vegetation
Created by Leif Einar Støvern on 12/8/2021 2:24:00 AM

COAT researchers monitor vegetation disturbances by biotic and abiotic factors, such as herbivory a...
Read More..